Beyond Bounding-Boxes: Learning Object Shape by Model-Driven Grouping
نویسندگان
چکیده
Visual recognition requires to learn object models from training data. Commonly, training samples are annotated by marking only the bounding-box of objects, since this appears to be the best tradeoff between labeling information and effectiveness. However, objects are typically not box-shaped. Thus, the usual parametrization of object hypotheses by only their location, scale and aspect ratio seems inappropriate since the box contains a significant amount of background clutter. Most important, however, is that object shape becomes only explicit once objects are segregated from the background. Segmentation is an ill-posed problem and so we propose an approach for learning object models for detection while, simultaneously, learning to segregate objects from clutter and extracting their overall shape. For this purpose, we exclusively use bounding-box annotated training data. The approach groups fragmented object regions using the Multiple Instance Learning (MIL) framework to obtain a meaningful representation of object shape which, at the same time, crops away distracting background clutter to improve the appearance representation.
منابع مشابه
Elastic Edge Boxes for Object Proposal on RGB-D Images
Object proposal is utilized as a fundamental preprocessing of various multimedia applications by detecting the candidate regions of objects in images. In this paper, we propose a novel object proposal method, named elastic edge boxes, integrating window scoring and grouping strategies and utilizing both color and depth cues in RGBD images. We first efficiently generate the initial bounding boxe...
متن کاملDeep Reinforcement Learning Attention Selection for Person Re-Identification
Existing person re-identification (re-id) methods assume the provision of accurately cropped person bounding boxes with minimum background noise, mostly by manually cropping. This is significantly breached in practice when person bounding boxes must be detected automatically given a very large number of images and/or videos processed. Compared to carefully cropped manually, auto-detected boundi...
متن کاملShape-aware Instance Segmentation
We address the problem of instance-level semantic segmentation, which aims at jointly detecting, segmenting and classifying every individual object in an image. In this context, existing methods typically propose candidate objects, usually as bounding boxes, and directly predict a binary mask within each such proposal. As a consequence, they cannot recover from errors in the object candidate ge...
متن کاملSaliency Based Opportunitstic Search for Object Part Extraction and Labeling
We study the task of object part extraction and labeling, which seeks to understand objects beyond simply identifiying their bounding boxes. We start from bottom-up segmentation of images and search for correspondences between object parts in a few shape models and segments in images. Segments comprising different object parts in the image are usually not equally salient due to uneven contrast,...
متن کاملSaliency Based Opportunistic Search for Object Part Extraction and Labeling
We study the task of object part extraction and labeling, which seeks to understand objects beyond simply identifiying their bounding boxes. We start from bottom-up segmentation of images and search for correspondences between object parts in a few shape models and segments in images. Segments comprising different object parts in the image are usually not equally salient due to uneven contrast,...
متن کامل